Инженерная графика Изометрические проекция Диаметрическая проекция Комплексные чертежи Чтение чережей моделей Элементы технического рисования Виды конструкторских документов Местные виды Сложные разрезы Сечения

Инженерная графика и начертательная геометрия


Сечение полых моделей и линии среза деталей

Разберем примеры сечений различных геометрических тел, построения линий пересечения поверхностей и определения действительного вида сечений.

Выполним упражнение, приведенное на рис. 218. Сначала выполняется комплексный чертеж усеченной полой модели, которая имеет отверстие, перпендикулярное оси призмы. Чертеж выполняется без определения действительного вида сечений. Затем для наглядности выполняется фронтальная диметрическая проекция.

На рис. 219 дана модель, конструкция которой состоит из трех геометрических тел с вертикальным цилиндрическим отверстием. Плоскость сечения Р пересекает поверхности всех трех геометрических тел: пирамиды, цилиндра и призмы.

При выполнении комплексного чертежа этой полой усеченной модели (рис. 219) предварительно определяют форму отдельных контуров тел, составляющих общую форму сечения. С помощью линий связи выполняются все три проекции этой модели.

Построение фронтальной диметрической проекции (рис. 219) начинают с построения трех геометрических тел: пирамиды, конуса и призмы, по координатам х, у, г находят точки, принадлежащие контуру фигуры сечения.

Действительный вид сечения строят способом перемены плоскостей проекции. Вычисление потенциальной энергии. При вычислении потенциальной энергии будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейно с ними связаны и растут постепенно вместе с ними.

Освоив построение сечений различных геометрических поверхностей и тел, определение действительного вида сечения и построения разверток поверхностей, необходимо выполнить ряд упражнений для развития пространственного воображения. Например, по двум проекциям усеченной полой модели (рис. 220, а) построить ее третью проекцию или найти ее третью проекцию из приведенных на рис. 220, б изображений.

Если говорить о цифровых камерах, то основное их отличие — фоточувствительный материал, в роли которого выступает матрица приборов с зарядовой связью (ПЗС-матрица). Ограничения, свойственные цифровой фототехнике, напрямую зависят именно от используемой в каждом конкретном аппарате светочувствительной матрицы. Изначально цифровая технология имела ряд ограничений, определявших возможности конечного продукта. Основные из них — разрешение матрицы, чувствительность и ее равномерность по всему спектру, инертность и уровень помех, иначе называемых цветовым шумом. С решением этих проблем можно без оговорок заявить о цифровой фототехнике как о замене галогенсеребряной и, наконец, начать отсчет новой эры в фотографии. Естественно, краеугольным остается вопрос цены на цифровую фототехнику.

Итак, разрешение. Известно, что со стандартной 35-миллиметровой пленки можно получить сканированное изображение приемлемого качества с разрешением 2000 dpi. При использовании профессиональной пленки это значение можно увеличить максимум до 4000 dpi — при более высоком разрешении сканирования будет заметна зернистость эмульсии. Размер отсканированного слайда в пикселах составит при этом около 4000х5800 точек, то есть максимальный размер получаемого изображения будет примерно равен 33х46 см при разрешении 300 dpi. Отметим, что мы рассмотрели пленку с минимальным зерном — то есть определенно с низкой чувствительностью, дорогую и пригодную для съемки далеко не в любых условиях. В общем случае считается нормой получение со слайда изображения, пригодного для полиграфического воспроизведения размером 10х15 см. Разрешение современных ПЗС-матриц, применяемых в профессиональных камерах, сегодня ограничено — 6 млн. точек. Соответственно, при печати с разрешением 300 dpi полученного такой камерой снимка его размер составит приблизительно 25х19 см, что вполне достаточно для любого печатного издания.

Изначально цифровая технология имела ряд ограничений: разрешение матрицы, чувствительность и ее равномерность по всему спектру, инертность и уровень помех. С решением этих проблем можно без оговорок заявить о цифровой фототехнике как о замене аналоговой.

Какие же дополнительные удобства получает фотограф, переходя на цифровую технологию съемки? В первую очередь, это оперативность обработки материала. При издательском цикле, равном одному дню, часовая задержка на проявку и печать материала и дополнительное время на сканирование слайда, плюс дорога до фотостудии и обратно, могут быть решающими. Глупо терять два–три часа на подготовку одного снимка, если этого можно избежать, купив однажды цифровой аппарат.

При частой съемке аппарат становится выгоден за счет экономии на расходных материалах — стоимость одного цифрового кадра практически нулевая. Однако, при необходимости «твердого» тиражирования снимков, этот фактор принимать за аксиому нельзя — стоимость полноцветной цифровой печати на сегодня выше, чем химический оттиск в минилаборатории. Цифровые материалы гораздо удобнее и дешевле хранить и структурировать: поиск нужного файла на жестком диске занимает менее минуты, в отличие от копания в пыли каталога. Да и тот факт, что цифровой кадр никогда не поцарапается и на него не наставят отпечатков жирными пальцами, весьма важен.


Машиностроительное черчение