Инженерная графика Изометрические проекция Диаметрическая проекция Комплексные чертежи Чтение чережей моделей Элементы технического рисования Виды конструкторских документов Местные виды Сложные разрезы Сечения

Инженерная графика и начертательная геометрия


Сечение геометрических тел плоскостями и развертки их поверхностями

ПОНЯТИЕ О СЕЧЕНИЯХ ГЕОМЕТРИЧЕСКИХ ТЕЛ

Детали машин и приборов очень часто имеют формы, представляющие собой различные геометрические поверхности, рассеченные плоскостями (рис. 175). Кроме того, иногда необходимо выполнить развертки поверхности полых деталей, усеченных плоскостью. Это применяется в раскрое листового материала, из которого изготовляются полые детали. Такие детали обычно представляют собой части всевозможных трубопроводов, вентиляционных устройств, кожухов для закрытия механизмов, ограждения станков и т.п (рис. 176).

Построения прямоугольных и аксонометрических проекций усеченных тел, а также определение истинного вида сечений и разверток поверхностей геометрических тел часто используются на практике.

Рассекая геометрическое тело плоскостью, получают сечение — ограниченную замкнутую линию, все точки которой принадлежат как секущей плоскости, так и поверхности тела. Падающая тень от прямой линии Тень, падающая от прямой линии, состоит из падающих теней от всех ее точек. Лучи, проходящие через все точки прямой, образуют лучевую плоскость, а тень от прямой линии есть линия пересечения лучевой плоскости с плоскостью или поверхностью, на которую падает тень (то есть след лучевой плоскости).

При пересечении плоскостью многогранника (например, призмы, пирамиды) в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника. При пересечении плоскостью тел вращения (например, цилиндра, конуса) фигура сечения часто ограничена кривой линией. Точки этой кривой находят с помощью вспомогательных линий — прямых или окружностей, взятых на поверхности тела. Точки пересечения этих линий с секущей плоскостью будут искомыми точками контура криволинейного сечения.

Пример сечения плоскостью Р геометрического тела — куба, лежащего на горизонтальной плоскости проекции Я, показан на рис. 177.

В первом случае (рис. 177, а) куб усечен фронтально-проецирующей плоскостью Р. Фигурой сечения является прямоугольник.

При построении двух проекций такого сечения (рис. 177, б) следует иметь в виду, что фронтальная проекция фигуры сечения совпадает с фронтальным следом секущей плоскости Ру.

Горизонтальная проекция фигуры сечения — прямоугольник.

Во втором случае (рис. 177, в) куб усечен горизонтально-проецирующей плоскостью Р. Фигура сечения — прямоугольник.

На рис. 177, г приведено построение проекций этого сечения. Горизонтальная проекция фигуры сечения совпадает с горизонтальным следом Ри секущей плоскости. Фронтальной проекцией сечения будет прямоугольник, одной стороной которого является линия пересечения плоскости Р с плоскостью передней грани куба.

Если куб пересечен плоскостью общего положения (рис. 177, д, ё), то полученная фигура сечения в данном случае (треугольник) проецируется на плоскости проекций V и Я с искажением.


РИС. 177

РИС. 174

Изобразительный материал

Технологии ввода изображений. Ввод изображений в ПЭВМ осуществляется на основе сканирования оригиналов иллюстративных материалов, использования цифровых фотокамер или путем создания рисунков и других элементов графического оформления публикаций с помощью инструментария графических пакетов.

Необходимо отметить, что процесс ввода изображений тесно взаимосвязан с параметрами соответствующих иллюстраций в подготавливаемом издании. В связи с этим классические процедуры сканирования изображений дополняются тем или иным набором операций, которые можно отнести к этапу обработки изображений. В первую очередь при сканировании изображений следует указать на разрешение, которое должно соответствовать разрешению растрирования изображения при его выводе на фотонаборные автоматы. В процессе сканирования изображения могут также осуществляться тоновая и цветовая коррекции изображения, поэтому практически все профессиональные графические пакеты обработки изображения (например, Adobe Photoshop) содержат специальные программные модули настройки (управления) процессов сканирования изображений.

Виды изобразительных материалов. Графические изображения имеют две формы представления: растровую (точечную) и векторную. Растр — это сетка из пересекающихся линий, разбивающая полутоновое изображение на микроштриховые элементы. Величина растра определяет разрешение изображения и измеряется в точках на дюйм (dpi). Чем мельче ячейки, образуемые линиями растра, тем больше градация тонов. Главной характеристикой растра является его линиатура, т. е. число линий, приходящихся на 1 погонный сантиметр, — от 24 и выше.

Растровая графика. Принцип кодирования графической информации в точечной графике чрезвычайно прост для понимания.

Он был изобретен и использовался людьми за много веков до компьютеров, мониторов и сканеров. Это и рисование «по клеточкам» — продуктивный способ переноса изображения с подготовительного картона на стену, предназначенную для фрески. Это и такие направления монументального и прикладного искусства, как мозаика, витраж, вышивка: в любой из этих техник изображение строится из дискретных элементов.

Все точечные изображения представляют собой не совокупность отдельных объектов, а мозаику из очень мелких элементов — пикселей, характеризующихся положением в так называемой битовой карте (таблице, матрице) и цветовыми характеристиками. Каждый пиксель, как стеклышко в витраже, независим друг от друга. Если задать больший физический размер ячеек, то и изображение будет отображаться с увеличением, и наоборот.


Машиностроительное черчение