Метод контурных токов Метод узловых потенциалов Метод двух узлов Электрическая цепь с последовательным соединением элементов R, L и C Резонанс токов Топологические методы расчета электрических цепей

Расчеты курсовой по электротехнике. Примеры выполнения заданий

Метод двух узлов

Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2. Пусть требуется выполнить расчет режима в заданной схеме (рис. 20).



Принимаем j0 = 0, тогда уравнение для узла 1 по методу узловых потенциалов будет иметь вид: j1G11 = J11, откуда следует непосредственное определение напряжения между узлами схемы:

   - уравнение метода двух узлов.

  Применительно к схеме рис. 20 данное уравнение примет конкретную форму:

.

Токи в ветвях схемы определяются из потенциальных уравнений:

Принцип наложения. Метод наложения

Принцип (теорема) наложения гласит, что ток в любой ветви (напряжение на любом элементе) сложной схемы, содержащей несколько источников, равен алгебраической сумме частичных токов (напряжений), возникающих в этой ветви (на этом элементе) от независимого действия каждого источника в отдельности. Для упрощения доказательства теоремы выберем одну из наружных ветвей сложной схемы за номером 1, в которой действительный ток равен контурному: I1 = Ik1. Составим для сложной схемы систему контурных уравнений  и решим ее относительно тока I1 = Ik1 методом определителей (Крамера):

Здесь G11 – входная проводимость ветви 1, G12, G13, …, G1n– взаимные проводимости между 1-й и остальными ветвями, I11 = E1G11 – частичный ток в ветви 1 от источника ЭДС  E1, I12 = E2G12, …, I1n = EnG1n – частичные токи в ветви 1 от источников ЭДС E2,…, En.

Принцип наложения выполняется только для тех физических величин, которые описываются линейными алгебраическими уравнениями, например, для токов и напряжений в линейных цепях. Принцип наложения не выполняется для мощности, которая с током связана нелинейным уравнением P=I2×R.

Принцип наложения лежит в основе метода расчета сложных цепей, получившего название метода наложения. Сущность этого метода состоит в том, что в сложной схеме с несколькими источниками последовательно рассчитываются частичные токи от каждого источника в отдельности. Расчет частичных токов выполняют, как правило, методом преобразования схемы. Действительные токи определяются путем алгебраического сложения частичных токов с учетом их направлений.

Пример. Задана схема цепи (рис. 21) и параметры ее элементов: E1 =12 B; E2 =9 B; R1= R2 =R3 = 2 Ом. Требуется определить токи в ветвях схемы методом наложения.

 


На рис. 22а представлена схема цепи для определения частичных токов от источника ЭДС Е1, а на рис. 22б - от источника ЭДС Е2.











Частичные токи в схеме рис. 22а от E1:

Ом;  I11= E1/R11=12/3 = 4A; I21= I31= 2А.

Частичные токи в схеме рис. 22б от E2:

Ом; I22 = E2/R22 = 9/3 = 3A; I12= I32 = 1,5А.

Действительные токи как алгебраические суммы частичных токов:

I1 = I11 - I12 = 4 – 1,5 = 2,5 A

I2 = - I21 + I22 = -2 + 3 =1 A

I3 = I31+ I32 = 2 + 1,5 =3,5 A

Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :  а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

Теоретические основы комплексного метода расчета цепей переменного тока Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической

Мощность переменного тока В сложной электрической цепи, состоящей из разнородных элементов R, L, C, одновременно происходят следующие физические процессы: а) необратимый процесс преобразования электрической энергии в другие виды (тепловую, механическую и др.), который называется активным; б) обратимый процесс колебания энергии между переменным электрическим полем конденсаторов , магнитным полем катушек и источником энергии, который называется реактивным.

Переменные ток в однородных идеальных элементах Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности


Расчет неразветвленной магнитной цепи