Метод контурных токов Метод узловых потенциалов Метод двух узлов Электрическая цепь с последовательным соединением элементов R, L и C Резонанс токов Топологические методы расчета электрических цепей

Расчеты курсовой по электротехнике. Примеры выполнения заданий

Метод узловых потенциалов

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).

Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:

  или 

Уравнение, связывающее потенциалы конечных точек ветви через падения напряжений на ее отдельных участках, называется потенциальным уравнением ветви. Из потенциального уравнения ветви могут быть определены ток ветви и напряжение на резисторе:

.

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 19. Параметры отдельных элементов схемы заданы.

Принимаем потенциал узла 0 равным нулю (j0 = 0), а потенциалы узлов 1 и 2 (j1 и j2) будем считать неизвестными, подлежащими определению.

Зададимся положительными направлениями токов в ветвях схемы I1, I2, I3, I4, I5. Составим потенциальные уравнения ветвей и выразим из них токи ветвей:

I1 = (j1 – j0 + E1 )/ R1

I2 = (j2 – j0 + E2 )/ R2

I3 = (j1 – j0 + E3 )/ R3

I4 = (j0 – j1 )/ R4

I5 = (j0 - j2  )/ R5


 

Составим (n-1)  уравнение по 1-му закону Кирхгофа для узлов 1 и 2:

-I1 – I3 + I4 – J1 – J2 = 0

-I2 + I3 + I5 + J2 =0

Подставим в уравнения 1-го закона Кирхгофа значения токов, выраженные ранее из потенциальных уравнений. После приведения коэффициентов получим систему узловых уравнений:

В обобщенной форме система узловых уравнений имеет вид:

Здесь введены следующие обозначения:

 G11 =1/R1 +1/R3 +1/R4; G22 =1/R2 +1/R3 +1/R5 и т.д. – собственные проводимости узлов, равные суммам проводимостей всех ветвей, сходящихся в данном узле, всегда положительны;

  G12 = G21 = 1/R3; Gnm = Gmn– взаимные проводимости между смежными узлами (1 и 2, m и n), равные сумме проводимостей ветвей, соединяющих эти узлы, всегда отрицательны;

J11 = - E1 /R3 – E3 /R3 – J1; J11 =- E2 /R2 – E3 /R3 + J1 и т. д. – узловые токи узлов, равные алгебраической сумме слагаемых E/R и J от всех ветвей, сходящихся в узле (знак ”+”, если источник действует к узлу, и знак “-” , если источник действует от узла).

Система узловых уравнений в матричной форме:

  или сокращенно ,

где   - матрица узловых проводимостей,  - матрица узловых потенциалов,  - матрица узловых токов.

Последовательность (алгоритм) расчета.

1) Принимают потенциал одного из узлов схемы равным нулю, а потенциалы остальных (n-1) узла считают неизвестными, подлежащими определению.

2) Руководствуясь обобщенной формой, составляют (n-1) уравнение для узлов с неизвестными потенциалами.

3) Определяются коэффициенты узловых уравнений и составляются их матрицы.

4) Система узловых уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные потенциалы узлов j1, j2, …

5) Выбираются положительные направления токов в ветвях исходной схемы I1, I2 , I3, I4, I5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов j1, j2, ….

6) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2 ×Rk).

Теорема о взаимности Выделим из сложной схемы две произвольные ветви “m” и “n”, в одной из которых включен источник ЭДС E (в ветви m). Теорема о взаимности гласит, что если источник ЭДС E, включенный в ветви “m”, вызывает в ветви “n” частичный ток I , то такой же источник ЭДС E, включенный в ветвь “n”, вызовет в ветви “m” такой же частичный ток I

Теорема об эквивалентном генераторе Формулировка теоремы: по отношению к выводам выделенной ветви или отдельного элемента остальную часть сложной схемы можно заменить а)эквивалентным генератором напряжения с ЭДС Еэ , равной напряжению холостого хода на выводах выделенной ветви или элемента (Еэ=Uxx) и с внутренним сопротивлением R0, равным входному сопротивлению схемы со стороны выделенной ветви или элемента (R0=RВХ); б)эквивалентным генератором тока с JЭ, равным току короткого замыкания на выводах выделенной ветви или элемента (Jэ=Iкз), и с внутренней проводимостью G0, равной входной проводимости схемы со стороны выделенной ветви или элемента (G0=Gвх).

Электрические цепи переменного синусоидального тока Переменный ток (напряжение) и характеризующие его величины Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону: i(t)=Im sin(wt+yi), u(t)=Umsin(wt+yu)

Среднее и действующее значения переменного тока и напряжения


Расчет неразветвленной магнитной цепи