Метод контурных токов Метод узловых потенциалов Метод двух узлов Электрическая цепь с последовательным соединением элементов R, L и C Резонанс токов Топологические методы расчета электрических цепей

Расчеты курсовой по электротехнике. Примеры выполнения заданий

Расчет сложных трехфазных цепей

Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов). Наиболее рациональным методом расчета таких трехфазных цепей является метод узловых потенциалов, при этом составление уравнений и их решение производится в матричной форме.

В более простых случаях возможно применение любых методов расчета, позволяющих получить экономичное решение задачи. На рис. 96 представлена схема параллельного подключения нескольких трехфазных приемников с различными схемами соединения фаз к одному генератору. В представленной схеме расчет фазных и линейных токов каждого из приемников может выполняться индивидуально и независимо друг от друга, а линейные токи источника определяются как геометрические суммы токов всех приемников, например, .






Как известно, объединенная трехфазная энергосистема работает в режиме, близком к симметричному. В симметричном режиме токи и напряжения смежных фаз отличаются только углом сдвига на ±120º. Расчет токов и напряжений в установившемся симметричном режиме производится только для одной из фаз, например для фазы А, при этом трехфазные цепи представляются однофазными эквивалентными схемами. На рис. 97 представлена символьная схема передачи энергии от трехфазного генератора к удаленным приемникам, а на рис. 98 – расчетная однофазная схема для той же цепи. На расчетной схеме рис. 98 каждому звену электропередачи соответствует его стандартная схема замещения.



В результате расчетов определяются токи и напряжения во всех элементах схемы для фазы А, например . Аналогичные токи и напряжения в фазе В определяется умножением соответствующих величин фазы А на поворотный множитель , а для фазы С – на множитель , например:

,

.

7. Мощность трехфазной цепи и способы ее измерения

Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи, равны суммам соответствующих мощностей отдельных фаз:

,

,

где  IA, UA, IB, UB, IC, UC – фазные значения токов и напряжений.

В симметричном режиме мощности отдельных фаз равны, а мощность всей цепи может быть получена путем умножения фазных мощностей на число фаз:

,

,

.

В полученных выражениях заменим фазные величины на линейные. Для схемы звезды верны соотношения ;, тогда получим:

.

Для схемы треугольника верны соотношения: Uф=Uл ; Iф=Iл /, тогда получим:

 

Следовательно, независимо от схемы соединения (звезда или треугольник) для симметричной трехфазной цепи формулы для мощностей имеют одинаковый вид:

  [Вт],

 [вар],

  [ВА].

В приведенных формулах для мощностей трехфазной цепи подразумеваются линейные значения величин U и I, но индексы при их обозначениях не ставятся.

Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:

, где Uw, Iw - векторы напряжения и тока, подведенные к обмоткам прибора.

Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.

Для измерения активной мощности симметричной трехфазной цепи применяется схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 99). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз: . Схема с одним ваттметром может быть использована только для ориентированной оценки мощности и неприменима для точных и коммерческих измерений.

Для измерения активной мощности в четырехпроводных трехфазных цепях (при наличии нулевого провода) применяется схема с тремя приборами (рис. 100), в которой производится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи определяется как сумма показаний трех ваттметров:

.

 

 

 

 

 

 

Для измерения активной мощности в трехпроводных трехфазных цепях (при отсутствии нулевого провода) применяется схема с двумя приборами (рис. 101).

При отсутствии нулевого провода линейные (фазные) ток связаны между собой уравнением 1-го закона Кирхгофа: . Сумма показаний двух ваттметров равна:

 

Таким образом, сумма показаний двух ваттметров равна активной трехфазной мощности, при этом показание каждого прибора в отдельности зависит не только величины нагрузки но и от ее характера.

На рис. 102 показана векторная диаграмма токов и напряжений для симметричной нагрузки. Из диаграммы следует, что показания отдельных ваттметров могут быть определены по формулам:

,

.

Анализ полученных выражений позволяет сделать следующие выводы. При активной нагрузке (φ = 0), показания ваттметров равны (W1 = W2).

При активно-индуктивной нагрузке(0 ≤ φ ≤ 900) показание первого ваттметра меньше, чем второго (W1 < W2), а при φ>600 показание первого ваттметра становится отрицательным (W1<0).

При активно-емкостной нагрузке(0 ≥ φ≥ -900) показание второго ваттметра меньше, чем первого (W1>W2), а при φ<-600 показание второго ваттметра становится отрицательным.

Вращающееся магнитное поле Одним из важнейших достоинств трехфазной системы является возможность получения с ее помощью кругового вращающегося магнитного поля, которое лежит в основе работы трехфазных машин (генераторов и двигателей).

Теоретические основы метода симметричных составляющих Метод симметричных составляющих применяется для расчета трехфазных цепей в несимметричных режимах. Несимметричные режимы в энергосистеме возникают при различных видах коротких замыканий. Расчет токов коротких замыканий – важная инженерная задача в электроэнергетике, которая решается методом симметричных составляющих.

Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN.

Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих. В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.

Фильтры симметричных составляющих Фильтрами симметричных составляющих называются технические устройства или схемы, служащие для выделения соответствующих составляющих токов или напряжений из несимметричной трёхфазной системы векторов. Напряжения и токи, выделяемые фильтрами симметричных составляющих, используются на практике в качестве входных величин для релейной защиты энергетических установок (генераторов, трансформаторов, линий электропередачи) от несимметричных режимов, возникающих в результате коротких замыканий, или для соответствующей сигнализации о несимметричном режиме.

Электрические цепи периодического несинусоидального тока Как известно, в электроэнергетике в качестве стандартной формы для токов и напряжений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приводят к дополнительным потерям энергии и снижению их коэффициента полезного действия. Синусоидальность формы кривой напряжения генератора является одним из показателей качества электрической энергии как товара.

Виды симметрии периодических функций Различают следующие виды симметрии периодических несинусоидальных функций. Нечетная симметрия: функция симметрична относительно начала координат и удовлетворяет условию Четная симметрия: функция симметрична относительно оси ординат и удовлетворяет условию


Расчет неразветвленной магнитной цепи