Дифференцируемость ФНП Диффенцирование неявно заданной функции Построить схематично график функции Предел функции многих переменных Вычисление интеграла Площадь плоской фигуры в полярных координатах

Математика 1-2 курс. Примеры решения контрольного, курсового, типового задания

Типовые задачи

Вычислить момент инерции относительно плоскости  дуги  , если плотность распределения массы в каждой точке дуги пропорциональна произведению
ординаты и апликаты, а при   равно 1.

Решение. Момент инерции , где  или на дуге , причем

, т.е. .

Итак, . Поэтому

.

Вычисление двойных интегралов базируется на понятии повторного интеграла.

Пусть  рассматривается на плоской области  и она правильная в направлении оси , т.е. всякая прямая, параллельная оси , пересекает границу области  не более чем в двух точках. Тогда область   удобно спроектировать на ось . Пусть проекция  на  есть .

Если   – уравнение нижней границы, а   – уравнение верхней границы, то любому  области  принадлежат те точки  вертикального отрезка, которые удовлетворяют
неравенствам

 (*)

Выражение вида  называется повторным
интегралом от функции   по области . Он вычисляется
следующим образом:

сначала находится внутренний интеграл ( – переменная интегрирования,  – фиксированная), а затем полученную функцию аргумента  интегрируем на .

Значение повторного интеграла – число.

Метод подбора частного решения неоднородного уравнения с правой частью специального вида. Методом Лагранжа может быть решено любое неоднородное уравнение с постоянными коэффициентами. Однако если свободный член в уравнении (20) имеет вид

,  (37)

где  и  - многочлены степеней, соответственно, m1 и m2, можно сразу указать вид частного решения в форме с неопределёнными коэффициентами. Общее правило таково: составим из коэффициентов при x в экспоненте и тригонометрических функциях число  и пусть r - кратность числа s0 как корня характеристического уравнения, m = max(m1, m2). Тогда частное решение надо искать в виде , где Rm(x) и Sm(x) - многочлены степени m с неопределёнными коэффициентами. Дифференцируя функцию yчн n раз, подставив эти производные в уравнение и приравнивая коэффициенты при одинаковых степенях x и одинаковых тригонометрических функциях (sin x или cos x), получим систему из 2(m + 1) уравнений относительно 2(m + 1) неопределённых коэффициентов многочленов Rm(x) и Sm(x). Решив эту систему, определим коэффициенты функции yчн(x).


Вычислить объем цилиндрического тела