Дифференцируемость ФНП Диффенцирование неявно заданной функции Построить схематично график функции Предел функции многих переменных Вычисление интеграла Площадь плоской фигуры в полярных координатах

Математика 1-2 курс. Примеры решения контрольного, курсового, типового задания

Вычисление интеграла ФНП.

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Вычисление определенного интеграла основано на следующих утверждениях, имеющих и самостоятельное значение.

Пусть функция  задана на , . Тогда интеграл  можно назвать "определенным интегралом с переменным верхним пределом", ,  – переменная интегрирования;
он является некоторой функцией верхнего предела, .

Теорема (о дифференцируемости  на )

Если   непрерывна на , то  дифференцируема на , причем  .

Доказательство. Пусть , : . Тогда

, здесь применено свойство о среднем значении непрерывной на  функции ,  – точка, расположенная между  и .

Далее рассмотрим отношение  при , получаем

.

Поскольку  – произвольная точка отрезка , то  
существует для каждого   из , т.е.  – дифференцируемая на  и

.

Замечания.  1. Из представления  следует
непрерывность   в точке  и в силу произвольности точки   – непрерывность  на .

Можно показать [1], что для непрерывности функции  достаточно потребовать интегрируемость (по Риману) подынтегральной функции  на .

Геометрические свойства интеграла ФНП

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .


Вычислить объем цилиндрического тела